Markov chain Monte Carlo (MCMC)

Thursday, November 8, 2018 00:19

For the glory of God

Introduction

- · A Markov Chain Monte Carlo is one of algorithms for sampling from a probability distribution.
- · Beline we diline into the MCMC algorithm, let us summutize a few preveguisite concepts.

Monte Coolo Method

- · Monte Coulo method is a computational algorithm that rely on repeated random sampling to obtain numerical results.
- · The idea is using randomness to solve problems that might be deleministic in principle.
- · Let us take an example ;
- Let's say that we want to know the value π (Suppose that we don't know the value)
- Steps are as following ;
 - 1) Draw a square and then inscribe a quadrant within it
 - 2) Liniformhy Scotter a given number of points over the square
 - 3) Count the number of pounds inside the quadrator

; Approximately 30,000 random potents

4) Calculate IL

Area of guadiant Total number of pounds inside cticle Inside cound

Area of square Total number of pounds inside square Total Sample cound

- 5) Note that;
 - If the powds are not writingly distributed, then the approximation will be poor.
 - There should be a large number of potuls.

Benoult's Hal

- In the theory of probability and statistics, a Berrowlli tital is a random experiment with exactly two possible outcomes
- · He actually tited to refine the idea of expectation;
 - He was focused on a method of accurately estimating the unknown probability of some event based on

· So, we can identify four possible transitions; 1) If we are in state 1 and a green ball occurs, we loop book to the same state and select again. 2) If we are in state 1 and a blue ball occurs, we jump over to state 2 and select. 3) If we are in State 2 and a green ball occurs, ... 4) If we are in state 2 and a blue ball occurs, ... Actually, the probability of a green versus blue selection is clearly not independent. 4 obviously, it depends on the previous outcome! · However, Markov proved that as long as every state in the machine is reachable, when you run these machines in a sequence, they teach equilibrium. (called as stationary distribution) 4 That is, no matter where you start, once you begin the sequence, the number of times you visit each state converges to some specific ratio or probability. · The concept of modelling sequences of random events using states and transition between states became known as a Markov chain -> It was emerged when Markov tred to extend Bernowii's trai Characteristic: (M) > (Q) > (S) > ... P(MK | MK-1, MK-2, ..., M1, M0) = P(MK | MK-1) 4 In other words, they are all connected but only dependent on the previous one Markov Chain Monte Carlo (MCMC) a) Introduction · It's time to talk about NCMC with the concepts that we discussed. e.g. Sampling on high dimensional probabilities · As always. Here is a target probability in which it is hard to sample points from the distribution. · The NCAC is used to sample points from the target probability. b) How does MCMC work? · Bastcally, the MCMC is a mixed word between Monte Corlo simulation and Markov chain - Therefore, we may be able to say that the NCNC is a sort of Northe couto stimulation where the stimulation uses the Characteristics of Markov Chain to sample pounts from a target probability.

The procedure is as following;

- 1) Choose randomly an initial value Xo
- 2) Calculate the Probability Density Function of No from the proposal distribution

- ; Here, Note that S A commonly used proposal distribution is a symmetric Gaussian distribution. In Metropolis-Hosting algorithm, the q(x) must be symmetric. \Rightarrow It means q(x|y) = q(y|x)
- 3) Perform Metropolis Hastings algorithm -> This is needed to use the Chalacteristic of Markou Chain
 - First, we are going to sample another power from the proposal distribution (It's possible because it's easy to sample)
 - Second, we need to calculate the acceptance probability (d);

$$d = \min \left(1, \frac{\rho(x_1) \, \varrho(x_0 \mid x_1)}{\rho(x_0) \, \varrho(x_1 \mid x_0)} \right)$$

 $p(N_0)$ p(x) p(x) p(x) p(x) p(x) p(x) p(x) p(x) p(x)

; Since we have a symmetric distribution of g(n),

$$\alpha = \min \left(1, \frac{p(N_0)}{p(N_0)}\right)$$

- Third, generate a uniform random number u on [0.1]
- Fourth, Check the criteria to accept or reject as following;
 - ① If u < old, accept the condidate by selfing $x_{4+1} = x'$
 - e.g. if $u < \alpha$, then we will accept the X1 as one of sample points on the target probability
 - ② If u > d, reject the condidate and set $x_{d+1} = x_d$ instead
 - e.g. Let's say that we accepted the X1 as a sample point from the target probability

In addition, we sample another pount to from the proposal probability distribution.

Let's say we obtained u>d; then, we're not choosing to as one of sample pounds on the target distribution

Instead, we are going to set X1 as a content point; and then sample another point on the proposal distribution.

4) Alepead His process enough such that we will be able to hit every point in the space.
From the procedure, we may notice that;
- This is obviously considered as Monte Corto method because we repeat the process randomly with a lot of iterations.
- This is also considered as Markov chain method because choosing random point is only dependent on the previous slep.
· As the Simulation goes to new large number of Heration,
- We may want to out off the beginning events (Burn out) because it's not stablized.
- Once the events reach to the stable status (e.g. Stationomy distribution in Markon chain), we may be able to use
the values from the stimulation.
CON WE thow it away?
: Yes, because of Markou Chain Characletistic (only dependent on the previous one),
we know that the effect of beginning powers as the number of Heration increases.
This slationary distribution is not affected by the beginning status.