Delta wing Aerodynamics

Wednesday, September 13, 2017 15

For the glory of God

Introduction

- · Supersonic Flow is totally different from subsonic flow in all aspects physically and mathematically.
- · Supersontc atriplanes usually have httphy swept wings

(It is subject to reduce a wave dry)

4 A special case of swept wing is with a triangular planform, namely Detha wings.)

Delta wings are used on many different types of high speed airplanes atomna the world

Horo.

- (a) Convair F-102A
 - : The first operational Jet airplane in the US to be designed with a delta wing.

- (d) Space Shuffle
 - : Indeed, it is a hypersonic airplane
- Then, why are we discussing this topic of the low-speed and incompressible flow over finite wings?
- ⇒ Obviously, all high-speed attiched should fly at low speed for takeoff and landing. Moreover, they sometimes fly at subsonic
- · For this reason, the low-speed aerodynamics characteristics of della wings are of great importance.

Delta wing Aerodynamics

· The Subsonic flow pattern over the top of a delta wing at angle of attack is sketched as follows.

- · The dominant aspect of this flow are the two vortex pathernus that occur in the vicinity of the highly swept Leading edges.
- These vortex patterns are created by the following mechanism;

- 1) The pressure on the bottom is higher than the pressure on the top due to the angle of attack.
- 2) The flow on the bottom surface in the vicinity of L.E. this to cort around the L.E. from the bottom to the top.
- 3) Since the L.E. is Sharp, the flow will separate along its entire length.
- 4) This separated flow carts into a primary vortex which exists above the wing just inboard of each leading edge.
- 5) And then it readlaches along the primary attachment line (line A1)

The phimany vollex is contained within this loop 1) ~ 5)

- · A secondamy voltex is formed underneath the primary vortex with its own separation and real-lack-ment lines.
- Stince the leading edge volticies (positioned above and somewhat inboard) are strong, it turns out;
 - Being a source of high energy -> Adaptively high-volticity flow -> local static pressure around the voltices is small

Hence, the surface pressure on the top surface of the delta wing is reduced near the leading edge

- ⇒ This phenomena so-called suction effect of the leading edge volticies enhances the 17th (Voltex 17th)
 - .. For this veason,

the ITA coefficient curve for a delta wing extribits an increase in CL for values of d

at which conventional wing planforms would be stalled. (But the ITH slope is small)

Basically, Delta wing has low thickness. So less ITH but delayed, stall angle.

· Therefore, the aerodynamic effect of these vortices is not necessarily advantageous.

Application

- · We have theated the cose of a sharp leading edge; such sharp edges cause the flow to separate at LE.
- On the other hand, if the LE radius is large, the flow separation will be minimized.

4 In turn. the drag penally will not be presented.

· However, we mentioned that the dethortory plantition with sharp leading edge is advantageous for Supersonic Aight. This advantage will be negated if the LE is rounded.

(A singular exception is the design of the space shattle)

