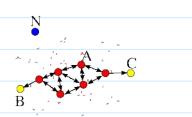

DBSCAN

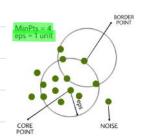
Saturday, December 7, 2019

19:28


For the glory of God

To the giving of con
What is DBSCAN?
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) is a data clustering algorithm proposed by
Worltin Ester in 1996.
· DBSCAN is one of the most popular unsupervised madine learning techniques that still remains as one of the highest cited
Science papels.
· The DBSCAN algorithm is based on the intuitive notion of clusters and noises.
- The key idea is that for each point of a cluster, the neighborhood of a given radius has to contain at least
a minimum number of powds.
- In other words, the main concept is to locate regions of high density that are separated from one another
by tegions of low density.
- In short, given a set of powds in some space, it groups together powds that are closely packed together
(powls with many nearby neighbors), marking as outliers powders that lie alone in low-density regions
whose nearest neighboks are too far away.
Why DBSCAN?
Fundamentally, all clustering methods use the same approach, i.e. calalate similarthes and use it to cluster the data points.
Then, what is the difference between DBSCAN and other clustering methods?
· The authors (Nortin ester et al.) Mentioned the following reasons in their paper;
- DBSCAN Yeguīies mīnīmum domain Knowledge.
- DBSCAN can discover clusters of arbithary shape.
- DBSCAN is efficient for large database.
· In other words.
- The other clustering algorithms (e.g. K-means and EM) are suitable only for compact and well-separated clusters.
- They also require users to specify the number of clusters before users run the algorithm.
- They are sometimes prone to noticy data potats.
- However, real life data may contain noise as well as integularity.
- The key concept of DBSCAN actually helps us to identify the concerns mentioned above.

· Step 3 :

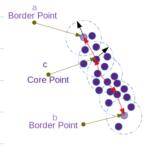

- If there are a sufficient number of powds (according to Nimpts) within & neighborhood, cluster formation starts.
 - 4> When the process starts, the current data point becomes the first point in the new cluster.
- Otherwise, the point is labeled as a noise point
 - 4) Note that this point can be considered as a cluster of different point.

S A: Cove potant

B, C: Border pount

N: Noise poud

e.g.


- As can be seen, the DBSCAN algorithm contains three different types of data points.
- S core pound: A pound is defined as a core if it has more than Universe pounds within E.

Border point: A point is defined as a border if it has fewer than UnivPls within 6 but it's in the neighborhood of a one point

Notice point: A point is defined as a notice if it is neither one not border point. (Not assigned to a cluster)

· Step 4:

- From the first point in the new cluster (step 3), add all points within & neighborhood of the first point into the same cluster.
- This is then repeated for all of the new points that have been just added to the cluster group.

in represends the recursive process

a, b are Density Reachable from a core point c.

a, b are called Density Connected points.

- 4 Actually, the process is repeated with the density connected cluster is completely found.
- The recursive process is repeated until all points in the cluster are determined.
 - 4) In other words, all potats of the cluster have been visited and labeled.

· Step 5 :

- Once we are done with the current cluster, a new unvisited point is selected and processed.
- (This is also repeated until all points of the cluster are marked as visited)

What is Pseudocode for the DBSCAU algorithm?

```
The Pseudocode can be expressed as follows: (Time complexity = O(n^2))
  DBSCAN(DB, distFunc, eps, minPts) {
                                                                  /* Cluster counter */
      for each point P in database DB {
         if label(P) # undefined then continue
                                                                  /* Previously processed in inner loop */
         Neighbors N = RangeQuery(DB, distFunc, P, eps)
                                                                  /* Find neighbors */
                                                                  /* Density check */
         if |N| < minPts then {
            label(P) = Noise
                                                                  /* Label as Noise */
            continue
         C = C + 1
                                                                  /* next cluster label */
         label(P) = C
                                                                  /* Label initial point */
         Seed set S = N \setminus \{P\}
                                                                  /* Neighbors to expand */
         for each point Q in S {
                                                                 /* Process every seed point */
            if label(Q) = Noise then label(Q) = C
                                                                 /* Change Noise to border point */
            if label(Q) = undefined then continue
                                                                 /* Previously processed */
                                                                  /* Label neighbor */
            label(Q) = C
            Neighbors N = RangeQuery(DB, distFunc, Q, eps)
                                                                 /* Find neighbors */
            if |N| ≥ minPts then {
                                                                  /* Density check */
               S = S U N
                                                                  /* Add new neighbors to seed set */
         }
     }
 What are advantages and disadvantages in terms of the DBSCAU algorithm?
 a) Advantages
 · It does not require one to specify the number of clusters in the data a priori.
 . It can find arbitrarily shaped clusters.
· It is robust to outtiers because it has a notion of noise.
· It only asks one to specify two hyperparameters (T.e. & and Min Pts)
b) Disadvawlages
· It does not work well when dealing with clusters of varying density.
· It usually struggles with high-dimensional datasets. (T.e. Curse of dimensionality)
· If the data and scale are not well understood, Choosing a meaningful distance threshold & can be difficult.
```