Simulated Annealing (SA)

Friday, November 15, 2019 10:23 PM

For the glory of God

For the giory of God
Introduction
· In practice, there are thousands of NP related problems artisting in numerous engineering areas.
4 For more defails, refler to 'NP problems' hand-withen note.
· Regarding the NP-telated problems, it should be noted that;
- NP class is the class of problems for which a candidate solution can be verified in polynomial time.
In this hand-withen note, we are going to talk about an optimization problem; thus, it's classified as a NP-hard problem.
.: We don't know if the problem can be vertited, in polynomial time.
(For sure, we know that it's impossible to solve the publicm in polynomial time)
. Then, the question is 'how to deal with a NP-hard problem?'
a) we may implement Greedy algorithm to handle it; however,
- Greedy algorithm does not always provide an optimal solution to an optimization problem.
b) we may use Brute-force approach to handle 7t; however,
- we may need to search through an enormous number of possible solutions.
4 Even with modern computing power, there may be Still many candidades.
Thanksfully, there are a few strategies to deal with NP-hard problems such as:
- Option 1: Branch and Bound → for more defails, refer to Branch and Bound hand-written note
- Option 2: Local Search, (T.e. Genetic algorithm, Simulated annealing,)
In this hand-written note, we're going to take a deep dive into the Simulated Annealing (SA) method for NP-hard problems.
What is Simulated Anneating (SA)?
The SA is an optimization technique that is inspired by the annealing process for metals.
In anneating, a metal is heated and then cooled at a specific rate to alter its crystalline structure and
material properties. The outcome of the process is dependent upon the rate at which the temperature is decreased.
· For instance, let us see the following arbithary system; which shows the basic idea of SA
··· o o ··· ; Disordered with high energy
o o

Case 1) If Cooling is slow Cos	se 2) If cooling is fast, e.g. dump it in water
0000	。 。
. 0 0 0	, °
i organized Cryshal	s Relatively disordered
4 SMall Enew - Fold	4 Rather bigger Enew-Eold
· As can be seen, the approach provided diff	beraud solutions depending on how to set the temperature.
· Them, how was the idea fed into au optim	17-20-lion problem ?
4 Let us walk through an overall process	described as below.
How does the SA process work?	
· The Allowing steps notionally detineate an ou	retall process of the SA in optimization problems.
- Step 1 : pick an initial set of desig	in variables and delermine Eold with initial temperature
x ₂ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	• : Global Minimum A palameler that we have to determine
E ₁ (• : Local winifimums
	Let's say Temperature = 100 and E1, E2 were calculated with an initial set.
$\longrightarrow \mathcal{X}_1$	
- Step 2 : Aandomly select another ne	ighborting potent and calculate Enew
χ_2 \uparrow \downarrow	• : Global yntifficuum
E1, old	• : Local WITHTHINMS • : Old potuds
((a)) s (a)	• : New powds T is Still 100
$\downarrow \longrightarrow \chi_1$	Note that we are now
- Step 8 : Implement the Metropolis	Criterion with K = constant
χ ₂ ↑	Here, & Errold → Ermew (: Enew < Eold) >> Er
€s. • €1	Here, $S = E_{1.01} \text{ id} \rightarrow E_{1.01} \text{ inew} (\because \text{ Enew} < \text{ Eodd}) \Rightarrow E_{1.01}$ $E_{3.01} \rightarrow E_{2.01} \text{ with probability } p(\Delta E) = \exp\left(-\frac{\Delta E}{RT}\right) \Rightarrow E_{2.01}$
(a) K= 1	Let's say Earnew > Earnew
∠ X₁	two powds only for this example
- Step 4 : The metropolis chiletion is	repealed multiple times for many trial points at a fixed temperature with k=const.
⇒ Eventually, the system w	eaches a state of Equitibitum at this temperature in which the probability dishibution
of the accepted pounts	approaches to the Boltzmann distribution.
χ ₂	I il daes man with it a solution

- Step 5: Once an Equitibitium has been achieved for a given T, lower T is defined and the Metropolis Citietion is repeated.

we can create annealing schedule that tells as how many iterations we take and how quickly T is decreased.

- Step 6 : Repeat until a convergence Stopping Citteria is met. (Tis gradually decreased and feeze the Space)

where we will want to do traditional optimization

What are characteristics of the SA?

· Simulated annealing is based on the concept of the Boltzmann probability distribution with the form:

$$P(\Delta E) = e \times p\left(-\frac{\Delta E}{RT}\right)$$
 where $K = BoHzmann's Constant$
 T is temperature

It describes the distribution of energy in matter at equilibrium at a given temperature

- · The SA works stigutly different than traditional optimization techniques (T.e. always accept the minimum) to avoid stucking in local minimum.
 - For example;
 - Let Eord be the value of the obsective function for an initial point
 - Let Enew be the value of the objective function for an total point (Neighbor)

	- If Enew < Eold , then always accept the tital point as the new initial point (let's say we're doing minimization)
	- If Enew > Eold. Hhen accept the tital potent as the new initial potent with the Boltzmann probability.
	We never throw Enew away at this potent and this is how SA is different to traditional (or classic) optimization
	(so that we can avoid the situation where we are stuck in local minimum because there might be a
	multiple local minimums in the function which is complicated.) Author than, we can jump to global space.
	- This is called as the Netropolis CHTerion.
	The SA is particularly developed for unconstrained optimization.
	· The SA does not guarautee global optimum; however, it yields a new-optimum solution.
	· The SA is not delerministic; thus, we can get different answers flom multiple runs.
	Simulated Annealing application on TSP problem
	· The following steps show how the SA works with the TSP problem.
	- Step 1: Inittalize temperature (T) and specify the constant (K)
	- Step 2 : Start from wondow route (R) through the selected cities
	e.g. i the route R
	4 0 -> 0 5
	- Step 3 : Evaluate the cost function E = f(distance)
	e.g. ER = 130
	- Step 4 : Define a new route (Rnew) by randomly swapping two cities
	e.g. o3; He route Rnew
	4 0 50 5
	- Step 5: Evaluate the cost Aurotion Ernew
	- Step 6: S The Ernew A Er, accept the as a new Youke The Ernew A Er, based on the phobability, accept that or not.
	If Ernow > Er, based on the phobability, accept it of not.
	$P(\Delta E) = e \times p \left(-\frac{\Delta E}{RT}\right)$
	V WI /
	- Step 7: Repeat the process cuntil the convergence CHTeria is Saltisfied. (e.g. The point stays at the area; not moving a lot)
	- Step 8 : Define a new temperature (Tnew)
	e.g. Tnew = dT ; where d<1
	- Step 9 : Repeat from step 4 to step 7 until the convergence criteria is Saltistized.

