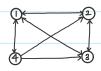
Traveling Salesman Problem (TSP)

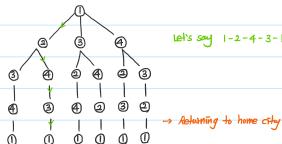
Sunday, May 13, 2018 17:38

For the glory of God

What is Traveling Salesman Problem?


- It can be described in term of a salesman who must travel to a number of cities during one tour.
- The salesman has to visit each city exactly once before teluming to his home city.
- · The objective is to delemine which must will minimize the total distance that the salesman must thave!

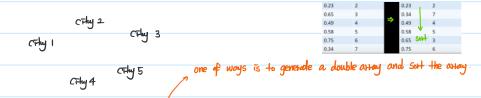
let's say Atlanta (city 1) is the Salesman's home city.


Characteristics of Traveling Salesman Problem

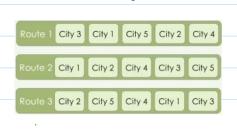
· Let's think about a simple case; say we have only 4 cities including the salesman's home city.

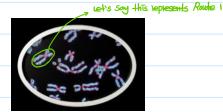
; 1 = Atlanta (Home CFLy)

- Let's assume that the distance (or cost) between the cities is given.
- · Then, we may be able to think about all possible voutes as following;



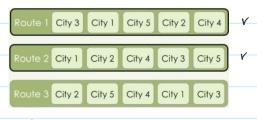
Let's say 1-2-4-3-1 is the shortest distance.


· Finally, we'll be able to choose one of the vowles, which is the optimal solution.


- · However, the difficulty of traveling salesman problems increases rapidly as the number of cities increases
 - For a problem with n cities, the number of feasible vouches to be considered is (n-1)!
- Because of the enormous difficulty of solving large traveling salesman problems. Heuristic methods continue to be

a popular way of addressing such problems.
What is Netaheuristic and heuristic method?
· Classical optimization methods (e.g. Linear programming) do not always work.
- For instance, some problems are so complicated that it may not be possible to find the optimal solution.
→ IP it is possible to have a modificential model for all objective functions and constrations.
the method shouldn't be matter. However, it's really hard to get them happen in reality.
In such struction, Heuristic methods are commonly used to find a good feasible solution.
4) At least reasonably close to being optimal
A heuristic method can be defined as an empirical search (e.g. based on experience, observation, and so faith) that is
lthely to discover a very good feastble solution but not necessarily an optimum solution.
- No guarantee con be given about the quality of the solution obtained i but a well-designed hewistic method
usually can provide a solution that is at least neothy optimal.
- This method is designed to fit a specific problem type rather than a variety of applications.
(In other words, this is very specific and problem-dependent)
· A metaheuristic method was introduced to fit heuristic methods into a general way.
- This is a general solution method that provides both a general Structure and stradegy guidelines.
- one of key features of metaheutistic method is its ability to escape from a local minimum.
- Genetic algorithm has become one of the popular techniques in metaheuristic methods.
4 For more information, refer to Optimization hand-lutitlen note.
Genetic Algorithm for Traveling Salesman Problem
Genetic Algorithm (GA) is inspired by an analogy with natural selection in Datum's theory of evolution
· The invention of Genetic Algorithm was credited to John Holland (photessor of Liniversity of Michigan)
· Steps in Genetic algorithm are as following;
Initalization, Selection, Aeproduction (Classover and mudation), Aeplacement
· Let's apply this algorithm to Traveling Salesman Problem.
a) Initialization
- In this case, let us assume that we have the cities. Random Sequence Number Number 0.23 2 0.23 2
CFlug 2 0.65 3 ⇒ 0.34 7 4 0.49 4 ⇒ 0.58 5 0.58 5 5 0.58
0.75 6 0.65 SAP 3 0.75 6 0.75 6

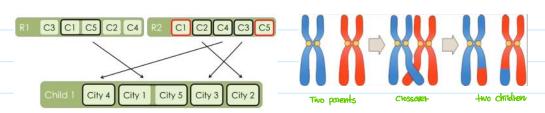
- with given cities, transformly generate a population of possible routes



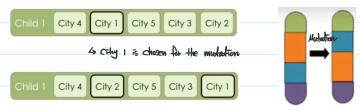
The first generation

b) Selection

- Calculate the Pitness of each route and select a few good solutions to be survived. (Generally, 20%)
- In TSP, the Pitness is reladed to the shortest distance (Tournament selection would be a good option)
- Let's say we selected two solutions, namely Route 1 and Route 2.


These are going to be used for reproduction.

The flist generation


- () Reproduction (crossouer and mutation)
 - Chossoupt is the genetic recombination of two pavents.
 - 4 After selecting two parents, we will consider the percentage determining if crossover occurs.

Aule of thumb is 70%; if no crossour occurs, both pavents simply become children.

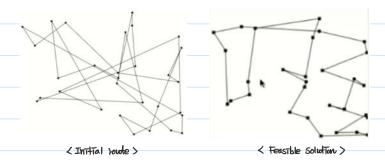
- There are one-point, two-point, and unitorm crossover
- In this case, let's think about the general case for the reproduction.

- Mutation is a process that is randomly flipping a few of the bits in the Childrens. (It is based on a specified probability, e.g. 10%)
 - 4 It is needed to maintain genetic diversity but it may be too landomly if it is too much.

4 CHy I was swapped with city 2 in the loude.

; let's say here, each city has a 5% Chance of being swapped with another city.

d) Replacement


- There are two ways to replace them for the next generation;
 - s kill all paients and ouly consider childrens as new paients
 - Evaluate all pavents and childrens, then select the best populations
- Let's say that we selected the Children 1 and got rid of parent 1 for the roude 1.

4) As the process is repeated, the algorithm will generate fitter and fitter generations.

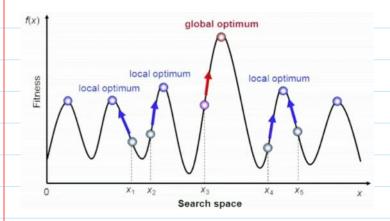
Characteristics of Genetic Algorithm for solving Traveling Salesman Problem

- The feasible solution would be affected by population size, crossover chance, and mudation chance.
- It will not almoys find the best solution but it can do a decent job and very guickly.

- -> Here, 30 landom cities publism
 - . The feasible solution is definitely not the best solution but it's probably quite close to what the optimum would be
- · There is a key trade off between Exploitation and Exploration.
 - Let's a 17the bit more talk about this.
 - a) Exploration

- It is the process of visiting entirely new regions of a search space.
- · It means that the algorithm will altemp to achieve a good coverage of the search space.
- It will not eventually find just any local optimum but ideally be close to the global optimum.
- · It is searching the space of possible solutions well.

b) ExploThation


- · It means that given a reasonable solution, the algorithm will keep refining the solution until it reaches a local optimum.
- It is the process of visiting those regions of a search space within the neighborhood of previously visited points.
- · It means using already exist solutions and make refinement to it, so that its fitness will improve.
- It takes advantage of existing best solutions in the population.

c) Note that

- In order to be successful, a search algorithm needs to establish a good ratio between exploration and exploitation.
- · For Genetic Algorithm, exploration is typically actived by crossover and mutation whitist selection is used to promote exploitation.
- . We could say that s Larger mudation rade: a kind of exploration

 Smaller mudation rade: a sort of exploration
- · Someone would argue that exploration is the genetic operator while exploitation is the selection phases itself.

· Amyhow,

- so earlier, we might be stuck on the solution by hitting local optimum in the global solution space.
- The hope is that by introducing Genetic algorithm we won't be stuck in the local optimum.
- We may be even climbed down or Jump across in our solution space.

Author code programming for Genetic Algorithm to solve Traveling Salesman Problem